has been presented in detail in a separate publication (Sax & Pletcher, 1969).

This research was supported by the U.S. Public Health Service, National Institutes of Health, under grant number NS-09178. The authors extend their gratitude to the University of Maryland Computer Science Center for its support under NASA Grant NSG398, enabling them to use the University's UNIVAC 1108. The computing facilities of the University of Pittsburgh were also used in this research. Computer programs employed were those of Busing & Levy (1957); Busing, Martin & Levy (1962); Craven (1963); Shiono (1963-8, 1965, 1967); Stewart (1967).

References

- Abrahamsson, S. & Pascher, I. (1966). Acta Cryst. 21, 79. BLAUSTEIN, M. P. & GOLDMAN, D. E. (1966). Science 153, 429.
- BRINK-SHOEMAKER, C., CRUICKSHANK, D. W. J., HODGKIN, D. C., KAMPER, M. J. & PILLING, D. (1964). *Proc. Roy. Soc.* A 278, 1.
- BUSING, W. R. & LEVY, H. A. (1957). Acta Cryst. 10, 180.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS, A Fortran Crystallographic Least-Squares Program. ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- CALLERI, M. & SPEAKMAN, J. C. (1964). Acta Cryst. 17, 1097
- CORBRIDGE, D. E. C. (1960). Acta Cryst. 13, 263.
- CRAVEN, B. M. (1963). Tech. Report No. 45, Crystallography Laboratory, University of Pittsbutgh.
- DAVIES, D. R. & CORBRIDGE, D. E. C. (1958). Acta Cryst. 11, 315.
- DE TITTA, G. T. & CRAVEN, B. M. (1970). Private communication.

- DUNITZ, J. D. & ROLLETT, J. S. (1956). Acta Cryst. 9, 327.
- FEINSTEIN, M. B. (1964). J. Gen. Physiol. 48, 357-374.
- FEINSTEIN, M. B. & PAIMRE, M. (1966). Biochem. Biophys. Acta 115, 33-45.
- HODGKIN, D. C., LINDSEY, J., SPARKS, R. A., TRUEBLOOD, K. N. & WHITE, J. G. (1962). *Proc. Roy. Soc.* A 266, 494.
- HUGHES, E. W. (1941). J. Amer Chem. Soc. 65, 1737. International Tables for X-ray Crystallography. (1962). Vol.
- III. Birmingham: Kynoch Press. JOHNSON, C. K. (1965). ORTEP, A Fortran Thermal-Ellipsoid Plot Program for Crystal Structure Illustrations,
- ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- KLYNE, W. & PRELOG, D. (1960). Experientia 16, 521.
- KYOGOKU, Y. & IITAKA, Y. (1966). Acta Cryst. 21, 49. LENHERT, P. G. (1968). Proc. Roy. Soc. A 303, 45.
- SAX, M. & PLETCHER, J. (1969). Science, 166, 1546.
- SAX, M., PLETCHER, J. & GUSTAFSSON, B. (1970). Acta Cryst. B26, 114.
- SHEFTER, E., BARLOW, M., SPARKS, R. A. & TRUEBLOOD, K. N. (1969). Acta Cryst. B25, 895.
- SHIONO, R. (1965). A Modification of ORFLS. Crystallography Laboratory, University of Pittsburgh.
- SHIONO, R. (1967). A Modification of the Zalkin Fourier Synthesis Program. Crystallography Laboratory, University of Pittsburgh.
- SHIONO, R. et. al. (1963-8). Technical Reports TR-63-2, 3, 4; TR-68-1, 2. Crystallography Laboratory, University of Piitsburgh.
- STEWART, J. M. et. al. (1967). X-ray 67 Program System for Xray Crystallography. Technical Report 67-58. University of Maryland.
- STEWART, R. F., DAVIDSSON, R. E. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175.
- WIBERG, K. B. (1964). *Physical Organic Chemistry*, pp. 83-93. New York: John Wiley.

Acta Cryst. (1971). B27, 1644

The Crystal Structure of Bis-(H-pyrrole-2-aldimine)copper(II), (C5H5N2)2 Cu(II)

BY R. TEWARI AND R. C. SRIVASTAVA

Department of Physics, Indian Institute of Technology, Kanpur, India

(Received 25 September 1970)

The crystal structure of bis-(*H*-pyrrole-2-aldimine)copper(II) has been determined using three-dimensional data collected on a diffractometer equipped with a single-crystal orienter. The space group is $P2_1/c$ with Z=2; cell dimensions are a=9.845 (2), b=5.562 (3), c=9.604 (3) Å and $\beta=103.07$ (1)°. The Cu²⁺ ions occupy special positions (0,0,0) and $(0,\frac{1}{2},\frac{1}{2})$ and the molecule must lie on a centre of symmetry. The structure was elucidated by the heavy-atom method and was refined by the full-matrix least squares technique. The final R is 0.061. The Cu²⁺ ion is coordinated with four N atoms in a squareplanar arrangement; the two unique Cu–N distances are 1.97 (1) and 1.95 (1) Å. The molecule is essentially planar, the maximum deviation from the best least-squares plane being 0.06 Å.

Introduction

The preparation and chemical properties of pyrrole-2aldimine chelates of copper have been reported by Enmart, Diehl & Collwitzer (1929) and Pfieffer, Hesse, Pfitzinger, Scholl & Theriot (1937). The electronic spectra of these chelates have been reported by Chakravorty & Kannan (1967). Stakleberg (1947) made some preliminary crystallographic studies of bis-(H-pyrrole-2-aldimine)copper (II), to which he assigned the space group $P2_1/c$. The complete crystal structure of any pyrrole-2-aldimine complex has not yet been reported in the literature. These chelates share common structural features with porphyrins which are of great biological significance. For these reasons and because of the interest in the study of coordination configurations of Cu²⁺, the crystal structure of bis-(H-pyrrole-2-aldimine)copper(II) was determined.

Experimental

The crystals of bis-(*H*-pyrrole-2-aldimine)copper(II) were grown by slow evaporation of its solution in A.R. grade toluene. Flat prismatic crystals of deeppurplebrown colour were obtained. Suitable crystals of approximate dimensions $0.20 \times 0.15 \times 0.15$ mm were chosen for X-ray studies.

Preliminary studies were carried out with rotation and Weissenberg photographs. The crystals were found to be monoclinic and showed the following systematic absences: h0l reflexions absent when l=2n+1 and 0k0reflexions absent when k=2n+1. These systematic absences fix the space group uniquely as $P2_1/c$.

Table 1. Crystal data

$(C_5H_5N_2)_2Cu(II)$ Monoclinic, $P2_1/c$	
$a = 9.845 \pm 0.002$ Å	$D_m = 1.59 \pm 0.02 \text{ g.cm}^{-3}$
$b = 5.562 \pm 0.003$	$D_c = 1.62 \text{ g.cm}^{-3}$
$c = 9.604 \pm 0.003$	$\mu_c = 28.14 \text{ cm}^{-1}$
$\beta = 103.07 \pm 0.01^{\circ}$	

Positions

Cell dimensions were determined on a General Electric XRD-6 diffractometer from observations on axial reflexions. Density was measured by flotation in an aqueous solutions of ZnCl₂. The cell parameters and other crystal data are listed in Table 1.

Three-dimensional intensity data were collected with Cu $K\alpha$ radiation using the stationary-crystal stationarycounter technique. Intensity measurements were made in shells of 2θ to a maximum of 100°. Beyond this point more than $\frac{2}{3}$ of the reflexions had intensities almost equal to the background and it was not considered worth while to collect data. Thus, intensity data for 730 reflexions were recorded. Reflexions whose intensities differed from background by less than one standard deviation of the background were classified as unobserved. There were 178 such reflexions.

The 020, 040, and 060 reflexions for which $\chi = 90^{\circ}$ were examined through 360° rotation of the angle φ , and no appreciable variation in their intensities was noticed. This indicated that the absorption correction was negligibly small. Consequently, no absorption correction was applied. The intensity data were corrected for background. Also, Lorentz and polarization corrections were applied.

Structure determination

With two molecules to a unit cell of space group $P2_1/c$, the molecules must lie on the centre of symmetry. Therefore, the Cu²⁺ ions were assigned the special positions (0,0,0) and $(0,\frac{1}{2},\frac{1}{2})$ and all other atoms were located by a series of three-dimensional Fourier and difference Fourier syntheses. In all these calculations

Table 2. Atomic positions	$(\times 10^4)$ and	d anisotropic the	ermal parameters	$(\times 10^{4})$
---------------------------	---------------------	-------------------	------------------	-------------------

Estimated standard deviations are given in parentheses. Temperature factors are at the form:

$\exp \left[-(h^2 b_{11} + k^2 b_{22} + l^2 b_{33} + 2hk b_{12} + 2hl b_{13} + 2hl b_{13}\right]$	klb_{23}
---	------------

	1 0511101	10				
	Cu^{2+}	x	<i>y</i>		<i>z</i> 0	
	N(1)	1287 (10)	2648	(17) - 16	50 (10)	
	N(2)	1492 (9)	- 875	(15) 162	29 (8)	
	C(1)	2482 (14)	2543	(23) 81	3 (13)	
	C(2)	2600 (11)	644	(17) 179	98 (11)	
	C(3)	3687 (12)	- 78	(27) 293	31 (13)	
	C(4)	3199 (14)	- 2213	(25) 347	4 (14)	
	C(5)	1829 (14)	- 2603	(23) 264	1 (13)	
	H(1)	1290	2890	- 20	00	
	H(2)	2560	2/90	204	0	
	H(3)	3800	2200	290	00 70	
	H(4)	5210	- 2360	25	0	
	H(5)	1730	- 2050	203		
Thermal p	arameters					
	b_{11}	b22	b33	<i>b</i> ₁₂	<i>b</i> ₁₃	b ₂₃
Cu ²⁺	156 (2)	316 (7)	129 (3)	- 32 (5)	37 (2)	-7 (5)
N(1)	161 (14)	334 (37)	142 (13)	- 52 (19)	33 (11)	9 (19)
N(2)	120 (12)	226 (31)	112 (11)	-5(15)	28 (9)	-12(15)
C(1)	160 (18)	460 (55)	168 (19)	-47(26)	53 (15)	-33(27)
C(2)	123 (15)	275 (44)	115 (14)	3 (18)	32(10)	-28(17)
C(3)	174 (17)	431 (49)	180 (18)	23 (32) 28 (28)	48 (14)	-37(33)
C(4)	183 (21)	404 (55)	102 (20)	20 (20)	50(10)	14(25)
((5))	193 (21)	390 (32)	140(1/)	44 (20)	04 (15)	14 (45)

an overall temperature factor of 4.8 Å^2 , as determined by the method of Wilson (1942), was used. Atomic positions from electron density peaks were deduced following the method of Ladell & Katz (1954).

The structure was refined by the full-matrix leastsquares technique, using the adapted version of program *ORFLS* (Busing, Martin & Levy, 1962). In leastsquares calculations all observed reflexions were given unit weights and the unobserved zero weights. Anisotropic temperature factors were included in the refinement during the last three cycles and the R, on observed reflexions only, was 0.063.

A three-dimensional difference Fourier synthesis at this stage revealed two out of five hydrogen atoms. The other three hydrogen atoms were assigned such that the C-H bond was 1.08 Å and coplanar with the two adjacent bonds, making equal angles with them. One cycle of full-matrix least-squares refinement was performed, including the hydrogen atoms but varying only the positional and anisotropic temperature-factor parameters of non-hydrogen atoms. This reduced R to 0.061 for observed reflexions only. The R with unobserved reflexions included was 0.080. The least-squares refinement was stopped at this stage because the maximum shift in any parameter was less than $\frac{1}{3}$ its σ .

Scattering factors for the calculations were taken from International Tables for X-ray Crystallography (1962).

Final atomic coordinates are listed in Table 2. Hydrogen atoms are numbered from H(1) to H(5) corresponding to the respective atoms N(1), C(1), C(3),

Fig. 1. X-Z projection of the crystal structure.

Fig. 2. A molecule of bis-(H-pyrrole-2-aldimine)copper(II).

Table 3. Observed and calculated structure factors

* indicates the unobserved reflexions

		5	1/085	TCALC 603	н		5	1085	YCALC.	- Н	Ň	۰.	1085	YCALC	н	Ķ	£.	YDas Y	CALC	, H	K L	1002.1	CRUC
2	ŏ	ŏ	234	286	-6	ŏ	6	180	175	-10	1	i	26	216		1	-2	26	194	-5.	ь с) в	20	194
3	ø	0	267	222	6	Ū.	6	113	97	10	ī	ī	25	379	ģ	i	4	23	3+	ŝ	i s	24	294
4	0	0	119	142	-6	0	6	173	168	0	1	2	267	264	-10	1	4	44	47	-6	1 8	28	20.0
5	0		206	232		0	6	88	94	1	1	2	287	291	0	1	5	304	291	-7	1 8	27	10.4
2	õ	6	235	241	-8	ŏ	5	134	127	-;	1	5	46	49	-1	÷	2	235	233	-8	1 8	20	18-
á	ō	ō	216	210	-9	é	6	57	53	-2	i	ž	618	596	ż	î	ś	224	240	ĭ	îý	72	92
9	0	n	75	62	-10	0	6	42	34	3	ĩ	2	205	124	-2	ī	5	133	140	-ī	īģ	74	69
10	0	0	26	29	U U	Ű.	8	109	109	-3	1	्	167	1/2	3	1	5	117	123	2	1 9	65	77
ň	Ň	- 5	100	159	-1	~	3	103	124		-	ŝ	45	52	-3	1	2	232	228	·2	1 9	146	146
-i	ŏ	2	796	805	ż	ð	8	iii	114	ŝ	î	5	141	136		î	ś	365	352	-1	iğ	110	124
ž	ō	2	296	300	-2	Ó	8	205	205	+5	ĩ	ž	104	117	5	ī	5	83	90	-4	i s	114	102
-2	0	2	916	952	3	ų	8	45	54	•	1	2	75	90	-5	1	5	195	1.98	-5	1 9	60	77
3	0	2	476	446	-3	3	8	128	113	-1	1	ŝ	25	324	6	1	5	58	51.	-6	1 9	57	67
- 2	0	5	388	418		ň	8	27	234	-4	÷		27	264	- 6	-	2	194	167	-1	1 10	25	170
-4	ŏ	ż	215	238	5	õ	8	64	69	ă	i	2	28	64	- ż	î	ś	191	178	ĭ	ixo	29	30
5	0	2	46	40	-5	ΰ	R	83	76	-9	ĩ	2	28	50	8	ĩ	5	66	69	-1	1 10	30	33
-5	0	2	294	292	-6	0	8	177	172	9	1	2	27	×0*	-8	1	5	79	67	-2	1 10	26	7.
6	0	?	146	145	-7	0	8	95	103	-10	1	2	27	120	-9	1	5	47	39	-3	1 10	26	114
	Ň	5	230	206	-0	ň	ŝ	24	616	10	÷	- 5	- 221	240	-10	1	2	74	174		1 16	39	38
-7	ŏ	;	125	123	ó	ŏ:	10	59	5A	ĭ	֔.	ś	276	288	ĭ	î	6	22	19	-6	i ič	38	44
8	Ö	2	84	74	1	0	10	105	116	-1	1	3	130	151	ż	1	6	48	47	Q	Z Q	162	113
-8	0	?	220	214	-1	0.	10	20	14	2	1	- 2	338	355	-2	1	6	109	108	1	2 0	229	220
_ ,		÷	20	201		33	10		117		÷.	3	694	644			2	112	05		2 0	452	342
10	ŏ	5	60	53	-4	ŏ	10	98	102	-5	î	á	548	529	-5	î	Å	85	85	4	2 0	246	265
-10	õ	2	67	64	-5	ō	ĩō	67	68	4	ī	3	218	219	-6	ĩ	6	27	4	5	ž č	252	282
0	0	4	419	421	-6	0	10	3,4	42		1	7	225	243	6	1	6	27	7#	6	2 (159	144
1	0		416	397	1	1	3	. 27	24	5	1	3	208	214	-7	1	6	28	19#		2 0	114	101
-1	ò	2	492	503	2	+	0	1)4	112	-?	1		316	312		+	2	25	11.4	8	\$ 8	138	36
-2	ŏ	7	152	155	1	î	ŏ	18	14.	-6	î	5	183	182	-9	î	6	27	6.8	10	2 0	24	294
3	ō	4	177	179	5	ĩ	ō.	152	151	7	ĩ	3	29	27	-10	ī	6	24	7	0	2 1	. 53	68
-3	0	4	150	137	6	1	0	60	55	-7	1	3	80	95	0	1	7	222	222	1	2 1	117	82
÷.	0		69	.17		1	0	160	164	-8	1	3	106	94	1	1	7	73		-1	2 1	. 78	152
	č	2	190	180		÷	ň	21	42.4	~	÷.	2	20	70	-;	- 1		101	109	-2	2 5	138	124
-5	ă	4	326	330	10	î	ŏ	26	13+	-9	ī	ž	88	64	-2	- 7	ż	202	193	3	2 1	59	32
6	õ	4	78	58	ō	ĩ	ī	538	540	÷10	ī	3	103	95	3	1	7	119	123	~3	2 1	137	131
-6	0	4	340	352	1	r	1	129	127	0	1	- *	37	54	-3	1	7	155	149	*	2 1	133	130
	0	2	59	60	-1		+	448	483			- 2	24	47			- 4	100	104		-	30	42
74	ň	2	116	103	-2	ì	ĩ	290	297	-2	i	- 2	25	20	5	1	÷	107	83	- 5	2	49	23
-8	ŏ	4	56	58	3	ĩ	ī	263	26 R	ž	ī	- 4	20	160	-5	ī	7	158	150	. 6	ž i	72	62
ģ	Ó	٠	56	68	-3	1	1	289	327	3	1	4	.49	54	6	1	7	56	75	-6	2	93	82
-9_	0	4	47	58	4	1	Ļ.	329	328	-3	1		177.	176	-6	1	7	126	116	~7	2	26	
-10	0	1	87	71	-4	1	1	340	369		- 1	1	73	83	-7	1	- 4	114	112		-	27	25.4
-8	0	2	371	368		î	î.	190	184		5	- 7	41	44	_0	5	÷	25	704	8	2	28	134
ĭ	ŏ	ŏ	302	297	6	ī	î	198	198	-5	ī	- 4	158	149	ő	ī	8	28	52+	-9	2	27	13*
-1	ò	6	232	231	-6	1	í.	195	208	6	ī	- 4	90	88	1	1	8	62	72	9	2	L 27	18#
2	0	6	200	204	7	1	1	206	206	-6	- 1	4	17	61	-2	1	8	27	8.0	-10	2	25	25 *
-2	0	6	188	174	-7	1	1	173	161	-7	1	2	26	174	2	;	8	28	19#	10	5	114	137
	š	ĉ	- 214	204	8		÷	159	156	-8	- 1	- 2	27	27.8		÷ î	2	28	13 #	1	2	246	235
						-	÷.				•		-			•				-			

45/1 1 31513 4252 4955 503 4082 2270 170 4958 121 225 432 1121 111 1213 4590 473 5 5 14 + + + + + + 5 14 4252 503 4092 2270 170 4958 1212 5 432 710 5918 8970 33 40894 3 5 5 14 + + + + + + 5 14 121 121 121 121 121 121 121 121 121	647 36 36 434 69 51 199 86 51 447 40 199 86 51 447 40 199 86 51 447 40 199 86 51 447 40 199 86 51 20 9 80 51 20 44 20 44 20 44 20 44 20 44 20 44 20 44 20 44 20 44 20 44 20 44 20 44 44 44 44 44 44 44 44 44 44 44 44 44
40077607574034424092477704009723443394888847228437152772818825942440924777675778778398888283371528712818825837143992306	26395030660814434457885403947056 24594098622722232403947056
7788888868888688888999999900000001111111111	4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 0 7 0 0 1 1 1 1 1 1 2 2 2 2 2 7 1 4 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 0 7 0 0 1 1 1 1 1 1 2 2 2 2 2 7 1 4 6 7 5 6 0 1 1 2 2 3 4 5 0 1 3 5 5 6 0 1 2 6 6 0 1 1 2 1 1 2 2 2 2 2 7 1 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
106 105 105 105 105 105 105 105 105 105 105	424 613 91 317 737 407 101 594 107 674 107 72 30 205 10 107 31 31 31 31 31 31 31 31 31 31
$\begin{array}{c} 97\\ 1940\\ 544251\\ 3133946\\ 122730\\ 06725\\ 22575667\\ 11211211662667\\ 1121111111111177\\ 452277600\\ 1277600\\ 1277668\\ 25277600\\ 1121111\\ 117173268\\ 3229446966\\ 119193\\ 1091\\ 12$	26775164451527334775766272223 1995831644515273347727766272223
3) , , , , , , , , , , , , , , , , , ,	555555555555555555555555555555555555555
667787.11234 55667787011273445567889011223344566801122334456	0 1 2 2 3 4 5 5 6 6 L 1 2 ? 3 3 4 4 5 5 6 0 L 1 2 ? 3
2466224311、、772223222221111112224421121、22342234223422311111122442423342244444444	4094619645610091027243976855
225774442192652226204530445432356913373469643354522282226762222220111222224	34 253 663 643 244 244 244 244 247 244 247 244 247 247
272227333333333333333333333333333333333	4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5
	-45401-2345601122334445566
924の1144954544112/112/1122441122045454545421411111111111111111	19544 9544 95544 95544 95544 95544 11734 111111 11111 11111 11111 11111 11111 1111
$\begin{array}{c} 4 + 5 \\ 7 + 1 \\ 1 \\ 4 \\ 3 \\ 7 \\ 2 \\ 2 \\ 2 \\ 7 \\ 1 \\ 2 \\ 2 \\ 2 \\ 7 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	23224280746740355000222962746 11111770523224 22224280746740355000222962746
222222222222222222222222222222222222222	○しくごうららうちしてしました?ろろらちらでだしここう。●そうらられたちにんちょうとうないたちにつきたちたんしたちんしたちんしたちたちたしてアメアメ
429467 2231157 42467 11775 117	169 107 52 52 53 184 224 61 11 224 61 11 224 61 12 224 61 224 224 11 224 224 61 125 225 235 245 125 251 251 251 251 252 24 253 24 253 253 253 253 253 253 253 253 253 253
4242323924211,124444444444444444444444444444444	267 H 57 6 37 354 51 7 4 7 0 9 4 9 1 0 4 5 7 6 37 3 5 4 5 1 1 7 4 5 7 6 1 2 0 4 9 1 0 4 5 7 6 1 2 1 0 9 4 9 1 0 4 5 7 6 1 2 1 0 9 4 9 1 0 4 5 7 6 1 2 1 0 9 4 9 1 0 4 5 7 6 1 2 1 0 9 4 9 1 0 4 5 7 6 1 2 1 0 9 4 9 1 0 4 5 7 6 1 2 1 0 9 4 9 1 0 4 5 7 6 1 2 1 0 9 4 9 1 0 4 5 7 6 1 2 1 0 9 4 9 1 0 4 5 7 6 1 2 1 0 9 4 9 1 0 4 5 7 6 1 2 1 0 9 4 9 1 0 9 4 9 1 0 4 5 7 6 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
1,2,2,3,2,4,5,5,6,6,7,7,8,9,0,0,1,2,7,3,4,5,7,4,6,7,8,8,9,0,0,1,2,2,3,4,6,5,6,6,7,7,8,9,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7

C(4) and C(5) to which they are bonded. The observed and calculated structure factors are given in Table 3.

Discussion of the structure

The crystal structure is shown in a (010) projection in Fig. 1. The Cu²⁺ ion forms a square-planar arrangement with the four nitrogen atoms of a complex molecule (two nitrogen atoms from each ligand molecule). Two *H*-pyrrole-aldimine molecules are related to each other through the centre of symmetry lying at Cu²⁺, so that the Cu²⁺ ion lies exactly on the plane made by N(1), N(2), N(1'), N(2') (primed numbers are related to unprimed ones by the centre of symmetry at Cu²⁺). The two unique Cu–N distances, *i.e.*, Cu–N(1) and Cu–N(2) are 1.97 and 1.95 Å respectively.

The bond lengths and angles are listed in Table 4 and shown in Fig. 1. The observed Cu–N bond lengths are in good agreement with the following reported structures: 1.97 and 1.98 Å in $[Cu(en)_2(H_2O)Br]$ Br, 1.98 and 1.99 Å in $[Cu(en)_2(H_2O)Cl]Cl$ (Mazzi, 1953); 2.01 and 2.02 Å in $Cu(en)_2(NO_3)_2$ (Komiyama & Lingafelter, 1964); 1.97 and 2.04 Å in K₂Cu(NH₂CH₂CONCH₂ COO)₂. 6H₂O (Sugihara, Ashida, Sasada & Kakudo, 1968); 1.99 and 2.02 Å in Cu(*en*)₂(SCN)₂ (Brown & Lingafelter, 1964).

Table 4. Bond lengths and bond angles Estimated standard deviations are given in parentheses.

Stilliated standard deviations are given in parentities

Lengths in	Å ($\sigma \times 10^3$)	Angles in deg	rees (σ)
$Cu^{2+}-N(1)$	1.972 (9)	$N(2)-Cu^{2+}-N(1)$	82.4 (0.3)
$Cu^{2+}-N(2)$	1.950 (8)	$Cu^{2+}-N(1)-C(1)$	113.3 (0.8)
N(1) - C(1)	1.328 (14)	N(1)-C(1)-C(2)	115.6 (1.0)
N(2) - C(2)	1.360 (12)	$C(2) - N(2) - Cu^{2+}$	112.3 (0.6)
N(2) - C(5)	1.353 (15)	C(5) - N(2) - C(2)	107.2 (0.8)
C(1) - C(2)	1.406 (16)	N(2)-C(2)-C(3)	111.4 (0.9)
C(2) - C(3)	1.401 (15)	C(2) - C(3) - C(4)	105.2 (0.9)
C(3) - C(4)	1.424 (19)	C(3) - C(4) - C(5)	106.0 (1.1)
C(4) - C(5)	1.421 (16)	C(4) - C(5) - N(2)	110.1 (1.0)
		C(1) - C(2) - N(2)	116.4 (0.9)

The N(1)-Cu-N(2) angle was $82\cdot3^{\circ}$ in the present structure. This compares with 83° in

 $K_2Cu(NH_2CH_2CONCH_2 COO)_2$. $6H_2O$ (Sugihara *et al.*, 1968); 85° in Cu(en)₂(SCN)₂ (Brown & Lingafelter, 1964); 86° in Cu(en)₂(BF₄)₂ (Brown, Lee & Melsom, 1968); 89° in [Cu(en)₂(H₂O)Cl]Cl and 90° in [Cu(en)₂(H₂O)Br]Br (Mazzi, 1953).

In the present structure both carbon atoms of the ring formed by Cu^{2+} , N(1), N(2), C(1) and C(2) are above the N-Cu-N plane by 0.098 and 0.054 Å respectively. A similar case is that of K₂Cu(NH₂CH₂CONH₂ COO)₂.6H₂O (Sugihara *et al.*, 1968) in which both the carbon atoms of the ethylenediamine ring are above the N-Cu-N plane by 0.406 and 0.302 Å, but in all other similar structures mentioned above one carbon atom of the ethylenediamine ring is above and the other below the plane.

Bis-(*H*-pyrrole-2-aldimine)copper(II) molecules in the present structure are essentially planar, the maximum deviation of any atom from the least-squares plane being only 0.06 Å. The equation of the least-squares plane in orthogonal Ångström space passing through the atoms in the asymmetric unit is:

$$-0.4042 x + 0.5647 y + 0.7195 z = 0.$$
 (1)

The distances of the constituent atoms from the above plane are listed in Table 5.

 Table 5. Deviation of atoms from the best least-squares
 plane [equation(1)]

	Deviation (Å)
Cu ²⁺	0.0
N(1)	0.018
N(2)	0.063
C(1)	0.010
C(2)	0.020
C(3)	-0.012
C(4)	-0.035
C(5)	0.015

The pyrrole ring in the present structure is planar with an average N-C bond length of 1.355 Å and an average C-C bond length of 1.415 Å. The average bond angle is 108°. Corresponding values in ibogaine (Arai, Coppola & Jeffrey, 1960) are 1.395, 1.430 Å and 108°; in Ni(II) 2,4-diacetyldeuteroporphyrin-*IX* dimethyl ester (Hamor, Caughey & Hoard, 1965) 1.38, 1.41 Å and 108°; in methoxyiron(III)-mesoporphyrin-*IX* dimethyl ester (Hoard, Hamor, & Hamor Caughey, 1965) 1.398, 1.426 Å and 108°; and in tetraphenyl porphyrin (Silvers & Tulinsky, 1967) 1.368, 1.410 Å and 108°.

Anisotropic thermal parameters are listed in Table 2. From these parameters, the vibration amplitudes along the three principal axes of the thermal ellipsoids and also the orientation of these axes have been calculated using the IBM 7044 program *ANTEMP* (Dwivedi, 1970). It has been shown by other authors (Srivastava & Lingafelter, 1966; Werner, 1964) that the temperature factors can compensate for errors in data due to absorption and dispersion; since these corrections have not been applied, perhaps the absolute magnitudes of the vibration amplitudes are of not much significance. Relative magnitudes of vibration amplitudes and theorientation of ellipsoids are shown in Fig. 3.

The authors thank Dr A. Chakravorty of the Indian Institute of Technology, Kanpur for providing the crystals and Dr Stanley Block of the National Bureau of Standards, Washington for giving them the Fourier summation program

All calculations were done on an IBM 7044 computer at I. I. T. Kanpur Computer Centre; C.S.I. R., New Delhi gave financial assistance.

References

ARAI, G., COPPOLA, J. & JEFFREY, G. A. (1960). Acta Cryst. 13, 553.

- BROWN, B. W. & LINGAFELTER, E. C. (1964). Acta Cryst. 17, 254.
- BROWN, D. S., LEE, J. D. & MELSOM, B. G. A. (1968). Acta Cryst. B24, 730.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS, A Fortran Crystallographic Least-Squares Program. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- CHAKRAVORTY, A. & KANNAN, T. S. (1967). J. Inorg. Nucl. Chem. 29, 1691.
- DWIVEDI, G. L. (1970). Tech. Rep. No. Phys. 35/70, IIT, Kanpur, India.
- ENMART, B., DIEHL, K. & COLLWITZER (1929). Ber. Dtsch. Chem. Ges. 62B, 1733.

Fig. 3. X-Z projection of the crystal structure showing thermal ellipsoids.

- HAMOR, T. A., CAUGHEY, W. S. & HOARD, J. L. (1965). J. Chem. Phys. 43, 3100.
- HOARD, T. L., HAMOR, M. J., HAMOR, T. A. & CAUGHEY, W. S. (1965). J. Amer. Chem. Soc. 87, 2312.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- KOMIYAMA, Y. & LINGAFELTER, E. C. (1964). Acta Cryst. 17, 1145.
- LADELL, J. & KATZ, J. L. (1954). Acta Cryst. 7, 460.
- MAZZI, F. (1953). R. C. Soc. Mineral, Ital. 9, 148.

- PFIEFFER, P., HESSE, T., PFITZINGER, H., SCHOLL, W. & THERIOT, H. (1937). J. Prakt. Chem. 149, 217.
- SILVERS, S. J. & TULINSKY, A. (1967). J. Amer. Chem. Soc. 89, (13), 3331.
- SRIVASTAVA, R. C. & LINGAFELTER, E. C. (1966). Acta Cryst. 20, 918.
- STAKLEBERG, M. VON (1947). Z. Inorg. Chem. 253, 136.
- SUGIHARA, A., ASHIDA, T., SASADA, Y. & KAKUDO, M. (1968). Acta Cryst. B24, 203.
- WERNER, P. (1964). Acta Chem. Scand. 18, 1851.
- WILSON, A. J. C. (1942). Nature, Lond. 150, 152.

Acta Cryst. (1971). B27, 1649

The Crystal Structure of α-Bromoacetophenone

BY M.P. GUPTA AND S. M. PRASAD

Department of Physics, University of Ranchi, Ranchi-8, Bihar, India

(Received 24 August 1970)

The crystal structure of α -bromoacetophenone has been determined using three-dimensional X-ray diffraction data. The compound crystallizes in the orthorthombic system with $a=9.74_3$, $b=18.93_5$, $c=4.22_2$ Å. Space group is $P2_12_12_1$, with four molecules in the unit cell. The structure has been refined by the least-squares method with individual anisotropic temperature factors for each atom to an R value of 0.107. In the crystal, the molecules are loosely separated by van der Waals distances all greater than 3 Å, the molecules themselves being arranged in two distinct layers, making an angle of ~122° with each other.

The spatial geometry of the acetophenone group and Br-C linkages in the group have not been reported before. The present structure analysis was attempted with this objective in view, as part of a larger programme in this department for determining the crystal structures of simple organic molecules.

The compound α -bromoacetophenone (C₆H₅CO. CH₂.Br) or phenacyl bromide crystallizes as colourless

Fig. 1. Electron density projection looking down the [001] axis. Contours are at intervals of 1.0 e.Å².